A continuación tenemos un ejemplo de cómo la acción de tres interruptores de entrada es convertida en una función lógica elaborada gracias a la programación llevada a cabo sobre el PLC con la ayuda de la computadora:
En este caso, tenemos tres interruptores X1, X2 y X3 de activación manual, todos ellos normalmente abiertos, conectados a sus respectivas entradas al PLC, en el cual gracias a la programación llevada a cabo con la ayuda de la computadora son combinados para formar la siguiente función Boleana:
Y1 = X1∙X2 + X2∙X3 + X1∙X3Con la misma facilidad con la cual formamos esta función Boleana a partir de los tres interruptores conectados a las entradas del PLC podríamos haber formado funciones Boleanas más complejas aún, lo cual nos dá una muestra de las enormes ventajas que tiene el darle capacidades de programación a los controladores lógicos.Ahora se mostrará la implementación en un PLC de algo que ya vimos aquí previamente; la dotación de una "memoria" a una configuración usando para ello la retroalimentación:
En este esquema, podemos ver en el diagrama de escalera que si se oprime manualmente el botón interruptor normalmente abierto X1, identificado como "Activación del Motor", la salida del relevador de control Y1 será energizada con lo cual dicho relevador cerrará uno de sus contactos permitiendo con ello que un motor M1 sea echado a andar. Pero al mismo tiempo, otro de los contactos del relevador de control que está en combinación lógica OR con X1 será también cerrado. Este es el contacto normalmente abierto Y1, y aunque el botón interruptor X1 deje de ser oprimido el motor seguirá trabajando por el efecto "memoria" que está proporcionando la retroalimentación de Y1 hacia sí mismo a través de uno de sus contactos. Si queremos detener el movimiento del motor, tenemos que abrir el contacto normalmente cerrado X2 oprimiendo dicho botón. Obsérvese que en el diagrama de escalera antes de comenzar la acción el interruptor X2 no es mostrado de color rojo pese a que el foquito LED del PLC está encendido indicando suministro de energía, en virtud de que a X2 se le considera "encendido" cuando el contacto es abierto por acción del usuario. El empleo de relevadores electromecánicos de uso pesado para este tipo de función es más común de lo que muchos pudieran imaginarse: cada vez que una persona entra a un ascensor y oprime un botón que marque un piso diferente al piso en el que se encuentra, la puerta del ascensor se cierra y la persona es llevada hacia el piso seleccionado sin necesidad de que la persona tenga que seguir manteniendo oprimido el botón correspondiente a dicho piso. Y una vez que ha llegado a dicho piso, otro contacto interruptor normalmente cerrado se abre "limpiando" con ello la memoria de la requisición del usuario. Pero este tipo de circuito puede trabajar en forma completamente automática sin intervención humana, como lo muestra el siguiente ejemplo animado de un tanque de almacenamiento de líquidos que consta de dos sensores que detectan uno de ellos un nivel bajo de líquido y el otro un nivel alto de líquido (ampliar imagen para poder ver la acción con efectos animados):
En este ejemplo, al principio el tanque está inicialmente vacío y todos los interruptores están en la condición de "verdadero" (True). En el monitor de una computadora que supervisa no sólo lo que ocurre en el diagrama de escalera (puesto a la derecha) sino inclusive en una representación pictográfica de lo que se está controlando (puesto a la izquierda), al empezar con el tanque vacío todos los interruptores aparecen de color verde al igual que los sensores de un nivel bajo del líquido (low level) y un nivel alto del líquido (high level). Estos dos sensores son las entradas en el diagrama de escalera. Es importante remarcar aquí antes de que el ejemplo se pueda prestar a confusiones que en esta representación visual se utiliza el mismo símbolo para un interruptor normalmente cerrado que el que se usa para un interruptor normalmente abierto, y la labor de distinción se debe hacer tomando en cuenta lo que ocurre en el diagrama pictográfico a la izquierda. Al comienzo, el motor de llenado de líquido (fill motor) que aparece como una salida puesta en el segundo peldaño del diagrama de escalera es energizado gracias al contacto normalmente cerrado en el segundo peldaño que es un contacto perteneciente al relevador de control cuya salida a su vez está puesta en la esquina superior derecha del primer peldaño del diagrama de escalera; por lo tanto al comienzo el motor se encuentra trabajando llenando el tanque de líquido. Podemos concluír que los dos interruptores puestos en el primer peldaño del diagrama de escalera son interruptores normalmente cerrados ya que de otra forma por estar ambos en configuración AND el motor de llenado no podría estar trabajando. Al irse llenando el tanque, el sensor de nivel bajo de líquido eventualmente es activado pasando con ello de la condición de "verdadero" (True) a la condición "falsa" (False), destacada con letras de color rojo en el primer interruptor (normalmente cerrado) puesto en el extremo izquierdo del primer peldaño que corresponde precisamente al sensor de nivel bajo de líquido. En el diagrama pictográfico, el mismo sensor de nivel bajo de líquido cambia de color verde a color rojo resaltando su activación. Pero el llenado de líquido no se detiene al abrirse este interruptor, ya que por el efecto "memoria" la corriente eléctrica encuentra un camino alterno (indicado por una línea de color azul). Eventualmente, el tanque se sigue llenando hasta que el sensor de nivel alto de líquido es activado pasando también de la condición de "verdadero" (True) a la condición "falsa" (False). Al ocurrir esto, el segundo interruptor normalmente cerrado del primer peldaño pasa de "verdadero" (True) a la condición "falsa" (False), lo cual corta definitivamente el suministro de energía a la salida correspondiente al relevador de control del motor de llenado que también entra en condición False al ser apagada . De este modo, queda claro que los dos interruptores que aparecen en el primer peldaño del diagrama de escalera son los que corresponden a las entradas proporcionadas por ambos sensores de nivel alto y nivel bajo de líquido. Al apagarse el relevador de control, su salida con la cual se está retroalimentando pasa también a la condición False al igual que su salida con la cual estaba permitiendo la energización del motor de llenado en el segundo peldaño. Es así como todos los interruptores entran en la condición de False en el diagrama de escalera. Al apagarse el motor, el nivel del líquido en el tanque empieza a descender conforme a su uso normal, hasta que eventualmente el nivel del líquido está por debajo del sensor del nivel alto que con ello pasa de la condición False a la condición True. Pero esto no es suficiente para echar a andar el motor de llenado de líquido, ya que es necesario que el sensor de nivel bajo de líquido también entre en la condición True para que el motor empiece a funcionar al energizarse de nuevo el relevador de control, lo cual ocurre eventualmente dando inicio a un nuevo ciclo de llenado automático del tanque.El circuito que acabamos de estudiar es un circuito de ciclo perpetuo. Una vez que ha sido echado a andar, continuará trabajando por sí solo sin intervención humana de ningún tipo mientras reciba suministro de corriente y mientras no falle alguno de los componentes.Independientemente de que las computadoras que llevan a cabo las funciones de inteligencia sobre un PLC han ido aumentando enormemente en grado de sofisticación, los mismos PLC han ido evolucionando en capacidad y en funciones, a grado tal que muchos de los relevadores electromecánicos que dieron origen al PLC son prácticamente obsoletos, desplazados por la presencia de semiconductores de alta potencia capaces de manejar voltajes y corrientes elevados. A continuación tenemos una muestra de un "relevador" de estado sólido en el cual ya no hay bobinas de alambre ni resortes ni palancas mecánicas móviles:
En este relevador de estado sólido, mejor conocido como opto-acoplador (opto-coupler) hay un aislamiento eléctrico total entre su entrada y su salida en virtud de que el acoplamiento interno entre la entrada y la salida se lleva a cabo por medio de la luz, con un diodo LED emitiendo un haz luminoso al cerrarse el interruptor a la entrada, haz luminoso que pone en funcionamiento un opto-triac permitiendo el paso de la corriente alterna a través de la carga. Obsérvese que con esta configuración la entrada es alimentada con una fuente de corriente directa, mientras que la carga recibe por su parte la energía de una fuente de corriente alterna, y todo ello sin necesidad de recurrir a electrónica interna costosa, lo cual ha sido posible gracias al advenimiento de la optoelectrónica que proporciona este tipo de aislamientos entre circuitos distintos utilizando a la luz como intermediaria.Un PLC de "nueva generación" es el Allen-Bradley PLC5, expandible a base de módulos, el cual se muestra a continuación:
La "rejilla" (rack) que alberga los módulos incluye como mínimo una fuente de poder que sea capaz de alimentar las funciones básicas de procesamientos de todos los módulos que sean montados en ella, y debe incluír también un módulo especial fijo (permanente, no-removible) que incorpore un microprocesador o un microcontrolador que llevará a cabo las funciones de control y programación interna dentro del PLC tanto de las entradas como de las salidas. Los módulos opcionales generalmente son módulos para poder manejar entradas o para poder manejar salidas, con distintas capacidades según lo requieran las necesidades de los clientes. Si alguna aplicación requiere súbitamente aumentar el número de relevadores de control de salidas de cinco a treinta, por ejemplo, no hay necesidad de tener que adquirir otro PLC completamente nuevo perdiéndose con ello la inversión original, sólo es necesario adquirir otro módulo para poder aumentar así la capacidad de manejo de salidas del PLC. Esta es esencialmente la idea detrás de la principal ventaja de la modularidad, en contraste con los PLCs que son vendidos como cajas "cerradas" cuyas capacidades no pueden ser ampliadas posteriormente, y es una de las razones por las cuales la computadora de escritorio no ha podido reemplazar por completo a los PLCs como en un principio se creyó que ocurriría.Un PLC de este tipo ofrece una gran flexibilidad a un costo igualmente grande, aunque para aplicaciones de automatización y control industrial y comercial existen controladores lógicos más económicos que inclusive además de ser portátiles se pueden programar directamente en el área de trabajo empleándose la carátula en la cual aparece el diagrama de escalera como medio visual para poder leer, interpretar, y reprogramar si es necesario, cualquiera de los parámetros de los que consta alguna aplicación, como lo es el caso del controlador ZEN fabricado por la empresa japonesa Omron:
Hemos hablado aquí de los controladores lógicos programables, desarrollados a fines de los años sesenta, los cuales están siendo reemplazados por los más modernos controladores programables de automatización (Programmable Automation Controller o PAC), los cuales ofrecen la posibilidad de utilizar algoritmos avanzados de control, manipulación extensiva de bases de datos, simulación de procesos complejos, procesamiento veloz bajo control de microprocesador, y capacidad en el manejo de rangos de memorias que están fuera del alcance de los PLCs.
5 comentarios:
magnífico
Grandísimo blog. Enhorabuena.
excelente
Muy buen texto, interesante la forma de exposicion y los graficos, muy buen desarrollo. Nombras otros capitulos... ¿donde los consulto? Gracias.
Marino Sanchez Muy buena exposicion otra vez excelente...Gracias por la buena didactica.
Publicar un comentario