Exponsor

CURSO TÉCNICO INSTALADOR DE ENERGÍA SOLAR TÉRMICA

Visita el siguiente enlace: http://enersolartermica.blogspot.com.es/ ¡No pierdas esta magnifica oportunidad de poder formarte en esta profesión con gran demanda de empleo! Ahora por oferta de lanzamiento y por tiempo limitado puedes adquirir este curso por solo 9,95€, cuando su valor de mercado es de 49€.

sábado, 4 de abril de 2009

DESALADORAS Y USO DE ENERGIAS RENOVABLES PARA SU FUNCIONAMIENTO


La desalación de aguas procedentes del mar ha creado grandes expectativas en la cuenca mediterránea, pero también se ha constituido en fuente de polémica. Esta tecnología se propone como un medio alternativo a los discutidos trasvases para conseguir recursos hídricos de calidad en una zona históricamente afectada por la escasez de agua.


La reciente derogación del Plan Hidrológico Nacional, basado en el trasvase de aguas del Ebro, ha situado a la desalación en el primer plano informativo. Sus defensores aseguran que el consumo energético de estas plantas sería muy inferior al coste la construcción de la infraestructura necesaria para el trasvase, y recuerdan que la ocupación del terreno y el desplazamiento de tierras serían también menores. Sus detractores, sin embargo, subrayan el impacto medioambiental que suponen las salmueras -residuos de agua salada que genera este proceso de obtención de agua dulce, ya que para eliminarlas sólo cabe su traslado y evacuación al mar, con lo que ello significa de agresión a la biodiversidad marina.


Los escasos estudios de impacto medioambiental disponibles en la actualidad, informan de que los vertidos de las plantas desalinizadoras han causado reducciones de poblaciones de peces, mortalidad de plancton y corales en el Mar Rojo, desaparición de manglares y angiospermas marinas en la laguna de Ras Hanjurah (Emiratos Árabes), y una contaminación importante de los fangos por cobres y níquel en Key West (Florida).



Desaladoras y consumo energético


Los investigadores llevan años intentando minimizar el problema del alto consumo de energía de las desaladoras. De hecho, existe ya una tecnología para crear energía basándose en la propia salmuera: un dispositivo llamado PE (Intercambiador de Presión, Pressure Exchanger en inglés) transfiere energía directamente de la salmuera al flujo de alimentación sin los problemas de rendimiento de los ejes giratorios de alta velocidad de las fábricas actuales. Si se siguiera este sistema, la reducción de los costes energéticos y económicos podría suponer que por primera vez sería posible producir agua potable a partir de agua de mar con un coste inferior por metro cúbico que el obtenido por otras vías (pantanos, canales, trasvases). Porque ese es otro de los aspectos claves, todavía no resuelto, de la polémica: ¿cuál es el precio final de un metro cúbico de agua desalada industrialmente y cuál el del proveniente del trasvase del Ebro?



Inconvenientes de la desalinización


En el proceso de extracción de la sal del agua de mar se producen residuos salinos que, una vez vertidos al mar, perjudican a la flora marina al aumentar la salinidad de las aguas.
Las complejas instalaciones de ósmosis inversa requieren un gran consumo de electricidad.
Las desalinizadoras se instalarían en lugares no ocupados por las urbanizaciones turísticas.
Como fábricas que son, tienen una vida limitada.
El agua desalada, al parecer, podría perjudicar a la agricultura. Los cítricos, por ejemplo, tan abundantes en la zona de Valencia y Murcia, son muy sensibles a los minerales que contiene el agua desalada.
Habría que realizar nuevas y costosas obras de infraestructura para trasladar el agua desalada a las zonas donde es necesaria.



Ventajas de la desalinización


Según algunas fuentes, supone el 3% de ocupación de terreno y el 3% de desplazamiento de tierras frente al trasvase del Ebro previsto en la Ley de Plan Hidrológico Nacional (PHN), ya derogado.
El sistema de desalinización consumiría un 30% menos de energía que la requerida para trasladar el agua del Ebro a Cataluña, Comunidad Valenciana, Murcia y Almería.
Podrían utilizarse energías renovables para el funcionamiento de las desaladoras, dado que en numerosas zonas del sur y el este del país, el sol y/o el viento abundan.



Consejos de los expertos


Los investigadores del Centre d´Estudis Avancats de Blanes - CSIC (Consejo Superior de Investigaciones Científicas) informan de una serie de medidas que habría que tener en cuenta:
La localización de las desaladoras debería ser en zonas donde el impacto sobre las comunidades bentónicas sea mínimo (verter preferentemente los residuos en fondos sin vegetación). Es importante evitar bahías cerradas y sistemas de gran valor ecológico, como las praderas de angiospermas marinas.
Los vertidos de salmueras habrá que situarlas en zonas de hidrodinamismo medio o elevado, que facilite la dispersión de la sal vertida al mar.
Deben evitarse cambios que puedan afectar los procesos de sedimentación.
Intentar que el agua de origen sea de buena calidad para minimizar el tratamiento químico posterior.

-Necesidad de investigar los distintos aspectos de impacto de salmueras en el litoral. Son necesarios estudios del impacto de cada elemento del vertido por separado y también de sus posibles interacciones.
Habría que establecer cuáles son los límites de tolerancia de las distintas comunidades bentónicas mediterráneas que pueden verse afectadas por los vertidos.



Energías renovables


Hay diversos factores que hacen de la desalación de agua del mar una aplicación atractiva para las energías renovables. Por un lado, muchas zonas con escasez de agua desalada poseen un buen potencial de alguna de dichas energías, especialmente la eólica y la solar. Un factor positivo es la simultaneidad estacional entre la época de mayor demanda de agua potable y la disponibilidad de dichas energías. En numerosas localidades costeras y centros turísticos, la demanda de agua potable crece en verano, motivado por el gran aumento que experimenta la población debido al turismo. Y es precisamente en verano cuando la disponibilidad de la radiación solar es máxima. Todos estos factores han motivado que varias instituciones y organismos oficiales hayan desarrollado, o estén desarrollando, proyectos destinados a mejorar y hacer más competitivos los sistemas de desalación de agua de mar que funcionan con energías renovables.




¿Cómo se desala el agua de mar?


La corriente de agua del mar, después de pasar por la planta desalinizadora, se convierte en un caudal de agua dulce apta para el abastecimiento urbano y el regadío. El problema es que durante este proceso se genera la salmuera, residuo del que hay que deshacerse, aunque también se podría reutilizar para generar un ecosistema salobre e incluso para obtener energía que realimente la fábrica desaladora.
Hay dos procesos básicos para extraer la sal del agua: por destilación (evaporación) y por ósmosis inversa (se fuerza al agua de mar a pasar, bajo una alta presión, a través de una membrana semipermeable que filtra las sales y las impurezas). En las plantas que funcionan por destilación el vertido (la salmuera, fundamentalmente) representa de 8 a 10 veces el volumen de agua depurado, mientras que en las plantas de ósmosis inversa este volumen del residuo es menor, de 2,5 a 3 veces el volumen depurado, si bien su contenido en sales es mucho mayor. En ambos casos, el vertido incluye algunos productos químicos (biocidas, anti-incrustantes y anti-espumantes) utilizados en el tratamiento del agua.

ELECTRÓNICA: HISTORIA.

La electrónica es la rama de la física, y fundamentalmente una especialización de la Ingeniería que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de dispositivos, desde las vávulas termoiónicas hasta los semiconductores. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos forma parte de los campos de la Ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la Física y química relativamente.

HISTORIA:

Se considera que la electrónica comenzó con el diodo de vacío inventado por John Ambrose Fleming en 1904. El funcionamiento de este dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.

El otro gran paso lo dio Lee De Forest cuando inventó el triodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa, con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Este fue un paso muy importante para la fabricación de los primeros amplificadores de sonido, receptores de radio, televisores, etc.

Conforme pasaba el tiempo, las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos (cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.

Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain, de la Bell Telephone, en 1948, cuando se permitió aún una mayor miniaturización de aparatos tales como las radios. El transistor de unión apareció algo más tarde, en 1949. Este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc. El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor(silicio), razón por la que no necesita centenares de voltios de tensión para funcionar.

A pesar de la expansión de los semiconductores, todavía se siguen utilizando las válvulas en pequeños círculos audiófilos, porque constituyen uno de sus mitos más extendidos.

El transistor tiene tres terminales (el emisor, la base y el colector) y se asemeja a un triodo: la base sería la rejilla de control, el emisor el cátodo, y el colector la placa. Polarizando adecuadamente estos tres terminales se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base.

En 1958 se desarrolló el primer circuito integrado, que alojaba seis transistores en un único chip.

En 1970 se desarrolló el primer microprocesador, Intel 4004. En la actualidad, los campos de desarrollo de la electrónica son tan vastos que se ha dividido en varias disciplinas especializadas. La mayor división es la que distingue la electrónica analógica de la electrónica digital.

La electrónica es, por tanto, una de las ramas de la ingeniería con mayor proyección en el futuro, junto con la informática.