Exponsor

CURSO TÉCNICO INSTALADOR DE ENERGÍA SOLAR TÉRMICA

Visita el siguiente enlace: http://enersolartermica.blogspot.com.es/ ¡No pierdas esta magnifica oportunidad de poder formarte en esta profesión con gran demanda de empleo! Ahora por oferta de lanzamiento y por tiempo limitado puedes adquirir este curso por solo 9,95€, cuando su valor de mercado es de 49€.

lunes, 23 de noviembre de 2009

TRABAJAR DESDE CASA 100% SEGURO.

EMPRESA DE PUBLICIDAD PRECISA PERSONAS PARA TRABAJAR DESDE CASA EN VARIAS ACTIVIDADES PUBLICITARIAS.

Empresa de publicidad de 1º nivel ( trabaja con las mejores empresas ), necesita personas para trabajar desde casa, cobro seguro 100% .

Si te interesa esta oferta, entra en el siguiente enlace y regístrate y comienza a ganar dinero ( SI NO PUEDES ENTRAR DIRECTAMENTE COPIA EL SIGUIENTE ENLACE EN TU NAVEGADOR ):

www.redpay.org/?ref=silvinobarcelo

Si conoces a alguien que le interese esta oferta, díselo, ya que son plazas limitadas.

NO PIERDAS MAS TIEMPO Y APÚNTATE A GANAR DINERO FÁCIL DESDE CASA, 100% SEGURO,
ENTRA AQUÍ Y REGÍSTRATE:

www.redpay.org/?ref=silvinobarcelo

miércoles, 11 de noviembre de 2009

HISTORIA DE LA PILA.

La primera pila eléctrica fue dada a conocer al mundo por Volta en 1800, mediante una carta que envió al presidente de la Royal Society londinense. Se trataba de una serie de pares de discos (apilados) de cinc y de cobre (o también de plata), separados unos de otros por trozos de cartón o de fieltro impregnados de agua o de salmuera, que medían unos 3 cm de diámetro. Cuando se fijó una unidad de medida para la diferencia de potencial, el voltio (precisamente en honor de Volta) se pudo saber que cada uno de estos elementos suministra una tensión de 0,75 V aproximadamente, pero ninguno de estos conceptos estaba disponible entonces. Su apilamiento conectados en serie permitía aumentar la tensión a voluntad, otro descubrimiento de Volta. El invento constituía una novedad absoluta y gozó de un éxito inmediato y muy merecido, ya que inició la era eléctrica en que actualmente vivimos, al permitir el estudio experimental preciso de la electricidad, superando las enormes limitaciones que presentaban para ello los generadores electrostáticos, únicos disponibles con anterioridad. Otra disposición también utilizada y descrita por Volta para el aparato estaba formada por una serie de vasos con líquido (unos junto a otros, en batería), en los que se sumergían las tiras de los metales, conectando externamente un metal con otro.
Inmediatamente empezaron a hacerse por toda Europa y América innumerables pruebas con diversos líquidos, metales y disposiciones, tratando de mejorar las características del aparato original, cosa que pocas veces se consiguió, pero que originó una infinidad de distintos tipos de pilas, de los cuales no ha quedado memoria más que de los más notables.
La pila Daniell, dada a conocer en 1836 y de la que luego se han usado ampliamente determinadas variantes constructivas, está formado por un electrodo de Zinc sumergido en una disolución de sulfato de Zinc y otro electrodo de cobre sumergido en una disolución concentrada de sulfato de cobre. Ambos electrolitos están separados por una pared porosa para evitar su reacción directa. En esta situación la tensión de disolución del zinc es mayor que la presión de los iones Zn++ y el electrodo se disuelve, emitiendo Zn++ y quedando cargado negativamente, proceso en el que se liberan electrones y que recibe el nombre de oxidación. En la disolución de sulfato de cobre, debido a su gran concentración de iones Cu++, se deposita Cu sobre el electrodo de este metal que de este modo queda cargado positivamente, mediante el proceso denominado reducción, que implica la incorporación de electrones. Esta pila presenta una diferencia de potencial de entre 1,07 y 1,14 V entre sus electrodos. Su gran ventaja respecto a otras de su tiempo fue la constancia del voltaje generado, debido a la elaborada disposición, que facilita la despolarización, y a la reserva de electrolito, que permite mantener su concentración durante más tiempo.
La pila Grove (1839) utiliza como despolarizador el ácido nítrico NO3H. Su fuerza electromotriz es de 1,9 a 2,0 V. Originariamente utilizaba platino para el ánodo, pero Cooper y Bunsen lo sustituyeron luego por carbón; el cátodo era de zinc tratado con mercurio. Fue muy apreciado por su estabilidad y su mayor energía, a pesar del gran inconveniente que representa la emisión de humos corrosivos. El mismo Grove y en el mismo año elaboró una pila que producía energía eléctrica por medio de la recombinación de hidrógeno y de oxígeno, lo que constituye el precedente de los generadores contemporáneos conocidos como pilas de combustible.
La pila Leclanché (1868) utiliza una solución de cloruro amónico en la que se sumerjen electrodos de cinc y de carbón, rodeado éste último por una pasta de dióxido de manganeso y polvo de carbón como despolarizante. Suministra una tensión de 1,5 V y su principal ventaja es que se almacena muy bien, pues el cinc no es atacado más que cuando se extrae corriente del elemento.
Este tipo de pila sirvió de base para el importante avance que constituyó la pila denominada seca, al que pertenecen prácticamente todas las utilizadas hoy. Los tipos hasta ahora descritos eran denominados húmedos, pues contenían líquidos, que no sólo hacían inconveniente su transporte, sino que solían emitir gases peligrosos y olores desagradables. Las pilas secas, en cambio, estaban formadas por un recipiente cilíndrico de zinc, que era el polo negativo, relleno de una pasta electrolítica, y por una barra de carbón en el centro (electrodo positivo), todo ello sellado para evitar fugas. Previamente se habían realizado otro tipo de pilas secas, como la de Zamboni (1812), pero eran dispositivos puramente experimentales, que no proporcionaban ninguna corriente útil. La sequedad es relativa, en primer lugar porque un elemento rigurosamente seco no suministraría electricidad alguna, de modo que lo que se encuentra en el interior de las pilas es una pasta o gel, cuya humedad se procura por todos los medios conservar, pero además porque el uso y el paso del tiempo tienden a corroer el contendedor, de modo que la pila puede verter parte de su electrolito al exterior, donde puede atacar a otros metales. Por esta razón se recomienda extraerlas cuando no se utilizan durante mucho tiempo o cuando ya han trabajado mucho. Este inconveniente está muy atenuado en los productos de finales del siglo XX gracias a la utilización de recipientes de acero inoxidable, pero todavía se produce alguna vez.
Importantes en otro sentido han sido las pilas patrón, destinadas a usos de calibración y determinación de unidades, como la pila Clark (1870), de zinc y mercurio, cuya tensión era de 1,457 V, y la pila Weston (1891), de cadmio y mercurio, con 1,018 V. Estas tensiones se miden en vacío, es decir, sin tener ninguna carga externa conectada, y a una temperatura constante de 20º C.

domingo, 8 de noviembre de 2009

LA PILA: DURACIÓN.

Lo ideal sería que las reacciones químicas internas no se produjeran más que cuando la pila esté en servicio, pero la realidad es que las pilas se deterioran por el mero transcurso del tiempo, aunque no se usen, pues los electrodos resultan atacados en lo que se conoce con el nombre de acción local. Puede considerarse que una pila pierde unos 6 mV por mes de almacenamiento, influyendo mucho en ello la temperatura. Actualmente esto no constituye un problema serio pues, dado el enorme consumo que hay de los tipos corrientes, las que se ofrecen en el comercio son de fabricación reciente. Algunos fabricantes han empezado a imprimir en los envases la fecha de caducidad del producto, lo que es una práctica encomiable.

LA PILA: VOLTAJE.

El voltaje, tensión o diferencia de potencial que produce un elemento electroquímico viene determinado completamente por la naturaleza de las sustancias de los electrodos y del electrolito, así como por su concentración. Walther Nernst obtuvo el premio Nobel de química de 1920 por haber formulado cuantitativamente y demostrado las leyes que rigen este fenómeno. La conexión de elementos en serie permite multiplicar esta tensión básica cuanto se quiera.
Las propiedades puramente eléctricas de una pila se representan mediante el modelo adjunto. En su forma más sencilla está formado por una fuente de tensión perfecta —es decir, con resistencia interna nula— en serie con un resistor que representa la resistencia interna. El condensador de la versión más compleja es enormemente grande y su carga simula la descarga de la pila. Además de ello entre los terminales también aparece una capacitancia, que no suele tener importancia en las aplicaciones de corriente continua.


Símbolo de una pila (izquierda); modelo eléctrico simplificado (centro); modelo más elaborado (derecha).
Una vez fijada la tensión, la ley de Ohm determina la corriente que circulará por la carga y consecuentemente el trabajo que podrá realizarse, siempre naturalmente que esté dentro de las posibilidades de la pila, que no son infinitas, viniendo limitadas fundamentalmente por el tamaño de los electrodos —lo que determina el tamaño externo de la pila completa— y por su separación. Estos condicionamientos físicos se representan en el modelo de generador como una resistencia interna por la que pasaría la corriente de un generador ideal, es decir, de uno que pudiese suministrar una corriente infinita al voltaje predeterminado.
Conforme la célula se va gastando, su resistencia interna va aumentando, lo que hace que la tensión disponible sobre la carga vaya disminuyendo, hasta que resulte insuficiente para los fines deseados, momento en el que es necesario reemplazarla. Para dar una idea, una pila nueva de las ordinarias de 1,5 V tiene una resistencia interna de unos 0,35 Ω, mientras que una vez agotada puede tener varios. Esta es la razón de que la mera medición de la tensión con un voltímetro no sirva para indicar el estado de una pila; en circuito abierto incluso una pila gastada puede indicar 1,4 V, dada la carga insignificante que representa la resistencia de entrada del voltímetro, pero, si la medición se hace con la carga que habitualmente soporte, la lectura bajará a 1,0 V o menos, momento en que esa pila ha dejado de tener utilidad. Las actuales pilas alcalinas tienen una curva de descarga más suave que las previas de carbón; su resistencia interna aumenta proporcionalmente más despacio.
Cuando se necesita una corriente mayor que la que puede suministrar un elemento único, siendo su tensión en cambio la adecuada, se pueden añadir otros elementos en la conexión llamada en paralelo, es decir, uniendo los polos positivos de todos ellos, por un lado, y los negativos, por otro. Este tipo de conexión tiene el inconveniente de que si un elemento falla antes que sus compañeros, o se cortocircuita, arrastra irremisiblemente en su caída a todos los demás.

Como todas las reacciones químicas, las que se producen dentro de una pila son sensibles a la temperatura, acelerándose normalmente cuando ésta aumenta, lo que se traducirá en un pequeño aumento de la tensión. Más importante es el caso de la bajada, pues cuando se alcanzan las de congelación muchas pilas pueden dejar de funcionar o hacerlo defectuosamente, cosa que suelen advertir los fabricantes. Como contrapartida, si se almacenan las pilas refrigeradas, se prolongará su buen estado.



LA PILA: PRINCIPIO DE FUNCIONAMIENTO.

Aunque la apariencia de cada una de estas celdas sea simple, la explicación de su funcionamiento dista de serlo y motivó una gran actividad científica en los siglos XIX y XX, así como diversas teorías.
Las pilas básicamente son dos electrodos metálicos sumergidos en un líquido, sólido o pasta que se llama electrolito. El electrólito es un conductor de iones.
Cuando los electrodos reaccionan con el electrolito, en uno de los electrodos (el ánodo) se producen electrones (oxidación), y en el otro (cátodo) se produce un defecto de electrones (reducción). Cuando los electrones sobrantes del ánodo pasan al cátodo a través de un conductor externo a la pila se produce una corriente eléctrica.
Como vemos, en el fondo Se trata de una reacción de oxidación y otra de reducción que se producen simultáneamente.

LA PILA.

Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio, tras de lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo negativo o ánodo y el otro es el polo positivo o cátodo.
Véase también: Acumulador eléctrico
En Argentina la pila volta es una pila común. En castellano ha venido siendo costumbre llamarla así, mientras que al dispositivo recargable o acumulador, se ha venido llamando batería. Tanto pila como batería son términos provenientes de los primeros tiempos de la electricidad, en los que se juntaban varios elementos o celdas —en el primer caso uno encima de otro, "apilados", y en el segundo adosados lateralmente, "en batería"— como se sigue haciendo actualmente, para así aumentar la magnitud de los fenómenos eléctricos y poder estudiarlos sistemáticamente. De esta explicación se desprende que cualquiera de los dos nombres serviría para cualquier tipo, pero la costumbre ha fijado la distinción.
La estructura fundamental de una pila consiste en piezas de dos metales diferentes introducidas en un líquido conductor de la electricidad o electrolito.

jueves, 5 de noviembre de 2009

Electrónica digital


La electrónica digital es una parte de la electrónica que se encarga de sistemas electrónicos en los cuales la información está codificada en dos únicos estados. A dichos estados se les puede llamar "verdadero" o "falso", o más comúnmente 1 y 0, refiriéndose a que en un circuito electrónico hay (1 - verdadero) tensión de voltaje o hay ausencia de tensión de voltaje (0 - falso). Electrónicamente se les asigna a cada uno un voltaje o rango de voltaje determinado, a los que se les denomina niveles lógicos, típicos en toda señal digital. Por lo regular los valores de voltaje en circuitos electrónicos pueden ir desde 1.5, 3, 5, 9 y 18 voltios dependiendo de la aplicación, así por ejemplo, en un radio de transistores convencional las tensiones de voltaje son por lo regular de 5 y 12 Volts al igual que se utiliza en los discos duros IDE de computadora.

Se diferencia de la electrónica analógica en que, para la electrónica digital un valor de voltaje codifica uno de estos dos estados, mientras que para la electrónica analógica hay una infinidad de estados de información que codificar según el valor del voltaje.

Esta particularidad permite que, usando Álgebra Booleana y un sistema de numeración binario, se puedan realizar complejas operaciones lógicas o aritméticas sobre las señales de entrada, muy costosas de hacer empleando métodos analógicos.

La electrónica digital ha alcanzado una gran importancia debido a que es utilizada para realizar autómatas y por ser la piedra angular de los sistemas microprogramados como son los ordenadores o computadoras.

Los sistemas digitales pueden clasificarse del siguiente modo:

  • Sistemas cableados:
  • Combinacionales.
  • Secuenciales.
  • Memorias.
  • Convertidores
  • Sistemas programados:
  • Microprocesadores.
  • Microcontroladores.


lunes, 2 de noviembre de 2009

EL TRANSISTOR COMO AMPLIFICADOR

El comportamiento del transistor se puede ver como dos diodos, uno entre base y emisor, polarizado en directo y otro diodo entre base y colector, polarizado en inverso. Esto quiere decir que ente base y emisor tendremos una tensión igual a la tensión directa de un diodo, es decir 0,6 a 0,8 V para un transistor de silicio y unos 0,4 para el germanio.

Pero la gracia del dispositivo es que en el colector tendremos una corriente proporcional a la corriente de base: IC = β IB, es decir, ganancia de corriente cuando β>1. Para transistores normales de señal, β varía entre 100 y 300.

Entonces, existen tres configuraciones para el amplificador:

Emisor común

Emisor común

La señal se aplica a la base del transistor y se extrae por el colector. El emisor se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganancia tanto de tensión como de corriente y alta impedancia de entrada. En caso de tener resistencia de emisor, RE > 50 Ω, y para frecuencias bajas, la ganacia en tensión se aproxima bastante bien por la siguiente expresión: G_V = -\frac {R_C}{R_E} ; y la impedancia de salida, por RC

Como la base está conectada al emisor por un diodo en directo, entre ellos podemos suponer una tensión constante, Vg. También supondremos que β es constante. Entonces tenemos que la tensión de emisor es: VE = VBVg

Y la corriente de emisor: I_E = \frac {V_E}{R_E} = \frac {V_B - V_g}{R_E}.

La corriente de emisor es igual a la de colector más la de base: I_E = I_C + I_B = I_B  (\beta + 1) = I_C (1 + \frac {1}{\beta}). Despejando I_C = \frac {I_E}{1 + \frac {1}{\beta}}

La tensión de salida, que es la de colector se calcula como: V_C = Vcc - I_C R_C = Vcc - R_C \frac {I_E}{1 + \frac {1}{\beta}}

Como β >> 1, se puede aproximar: 1 + \frac {1}{\beta} = 1 y, entonces, V_C = Vcc - R_C I_E =  Vcc - R_C \frac {V_B - V_g}{R_E}

Que podemos escribir como V_C = (Vcc + R_C \frac {V_g}{R_E})- R_C \frac {V_B}{R_E}

Vemos que la parte (Vcc + R_C \frac {V_g}{R_E}) es constante (no depende de la señal de entrada), y la parte - V_B \frac {R_C}{R_E} nos da la señal de salida. El signo negativo indica que la señal de salida está desfasada 180º respecto a la de entrada.

Finalmente, la ganancia queda: G_V =\frac {V_C}{V_B} =- \frac {R_C}{R_E}

La corriente de entrada, I_B = \frac {I_E}{1+\beta}, que aproximamos por I_B = \frac {I_E}{\beta}=\frac {V_E}{R_E \beta}=\frac {V_B - V_g}{R_E \beta}.

Suponiendo que VB>>Vg, podemos escribir:I_B = \frac {V_B}{R_E \beta}

y la impedancia de entrada: Z_{in} = \frac {V_B}{I_B}=\frac {V_B}{\frac {V_B}{R_E \beta}}=R_E \beta

Para tener en cuenta la influencia de frecuencia se deben utilizar modelos de transistor más elaborados. Es muy frecuente usar el modelo en pi.

Base común

Base común

La señal se aplica al emisor del transistor y se extrae por el colector. la base se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganacia sólo de tensión. La impedancia de entrada es baja y la ganancia de corriente algo menor que uno, debido a que parte de la corriente de emisor sale por la base. Si añadimos una resistencia de emisor, que puede ser la propia impedancia de salida de la fuente de señal, un análisis similar al realizado en el caso de emisor común, nos da la ganancia aproximada siguiente: G_V=\frac {R_C}{R_E}.

La base común se suele utilizar para adaptar fuentes de señal de baja impedancia de salida como, por ejemplo, micrófonos dinámicos.

Colector común

Colector común

La señal se aplica a la base del transistor y se extrae por el emisor. El colector se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganacia de corriente, pero no de tensión que es ligeramente inferior a la unidad. Esta configuración multiplica la impedancia de salida por 1/β.

El transistor frente a la válvula termoiónica


Antes de la aparición del transistor los ingenieros utilizaban elementos activos llamados válvulas termoiónicas. Las válvulas tienen características eléctricas similares a la de los transistores de efecto de campo (FET): la corriente que los atraviesa depende de la tensión en el borne de comando, llamado rejilla. Las razones por las que el transistor reemplazó a la válvula termoiónica son varias:

  • Las válvulas necesitan tensiones muy altas, del orden de las centenas de voltios, que son letales para el ser humano.
  • Las válvulas consumen mucha energía, lo que las vuelve particularmente poco útiles para el uso con baterías.
  • Probablemente, uno de los problemas más importantes haya sido el peso. El chasis necesario para alojar las válvulas y los transformadores requeridos para su funcionamiento sumaban un peso importante, que iba desde algunos kilos a decenas de kilos.
  • El tiempo medio entre fallas de las válvulas termoiónicas es muy corto comparado con el de los transistores, sobre todo a causa del calor generado.
  • Las válvulas presentan una cierta demora en comenzar a funcionar, ya que necesitan estar calientes para establecer la conducción.
  • El transistor es intrínsecamente insensible al efecto microfónico, muy frecuente en las válvulas.
  • Los transistores son más pequeños que las válvulas, incluso que los nuvistores. Aunque existe unanimidad sobre este punto, conviene hacer una salvedad: en el caso de dispositivos de potencia, estos deben llevar un disipador, de modo que el tamaño que se ha de considerar es el del dispositivo (válvula o transistor) más el del disipador. Como las válvulas pueden funcionar a temperaturas más elevadas, la eficiencia del disipador es mayor en ellas que en los transistores, con lo que basta un disipador mucho más pequeño.
  • Los transistores trabajan con impedancias bajas, o sea con tensiones reducidas y corrientes altas; mientras que las válvulas presentan impedancias elevadas y por lo tanto trabajan con altas tensiones pequeñas corrientes.
  • Finalmente, el costo de los transistores no solamente era muy inferior, sino que contaba con la promesa de que continuaría bajando (como de hecho ocurrió) con suficiente investigación y desarrollo.

Como ejemplo de todos estos inconvenientes se puede citar a la primera computadora digital, llamada ENIAC. Era un equipo que pesaba más de treinta toneladas y consumía 200 kilovatios, suficientes para alimentar una pequeña ciudad. Tenía alrededor de 18.000 válvulas, de las cuales algunas se quemaban cada día, necesitando una logística y una organización importantes.

Cuando el transistor bipolar fue inventado en 1947, fue considerado una revolución. Pequeño, rápido, fiable, poco costoso, sobrio en sus necesidades de energía, reemplazó progresivamente a la válvula termoiónica durante la década de 1950, pero no del todo. En efecto, durante los años 1960, algunos fabricantes siguieron utilizando válvulas termoiónicas en equipos de radio de gama alta, como Collins y Drake; luego el transistor desplazó a la válvula de los transmisores pero no del todo de los amplificadores de radiofrecuencia. Otros fabricantes, de equipo de audio esta vez, como Fender, siguieron utilizando válvulas en amplificadores de audio para guitarras. Las razones de la supervivencia de las válvulas termoiónicas son varias:

  • El transistor no tiene las características de linealidad a alta potencia de la válvula termoiónica, por lo que no pudo reemplazarla en los amplificadores de transmisión de radio profesionales y de radioaficionados.
  • Los armónicos introducidos por la no-linealidad de las válvulas resultan agradables al oído humano, por lo que son preferidos por los audiófilos
  • El transistor es muy sensible a los efectos electromagnéticos de las explosiones nucleares, por lo que se siguieron utilizando válvulas termoiónicas en algunos sistemas de control-comando de cazas de fabricación soviética.


viernes, 30 de octubre de 2009

TRANSISTORES Y ELECTRÓNICA DE POTENCIA

Con el desarrollo tecnológico y evolución de la electrónica, la capacidad de los dispositivos semiconductores para soportar cada vez mayores niveles de tensión y corriente ha permitido su uso en aplicaciones de potencia. Es así como actualmente los transistores son empleados en conversores estáticos de potencia, controles para motores y llaves de alta potencia (principalmente inversores), aunque su principal uso está basado en la amplificación de corriente dentro de un circuito cerrado.

jueves, 29 de octubre de 2009

TIPOS DE TRANSISTORES

Transistor de punta de contacto

Fue el primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.

Transistor de unión bipolar

El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.

La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).

La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor esta mucho más contaminado que el colector).

El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.

Transistor de unión unipolar

Tambien llamado de efecto de campo de unión (JFET), fué el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contacrtos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.

Transistor de efecto de campo

El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.

  • Transistor de efecto de campo de unión, JFET, construido mediante una unión PN.
  • Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.
  • Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.

Fototransistor

Los fototransistores son sensibles a la radiación electromagnética, en frecuencias cercanas a la de la luz.



miércoles, 28 de octubre de 2009

EL TRANSISTOR: HISTORIA

Fue el sustituto de la valvula termoiónica de tres electrodos o triodo, el transistor bipolar fue inventado en los Laboratorios Bell de EE.UU.en diciembre de 1947 por John Bardeen, Walter Brattain yWillian Bradford, quienes fueron galardonados con el Premio Nobel de Física en 1956.

Al principio se usaron transistores bipolares y luego se inventaron los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre la fuente y la pérdida (colector) se controla usando un campo eléctrico (salida y pérdida (colector) menores). Por último, apareció el semiconductor metal-óxido FET (MOSFET). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (IC). Hoy la mayoría de los circuitos se construyen con la denominada tecnología CMOS (semiconductor metal-óxido complementario). La tecnología CMOS es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.

El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitadores einductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.

De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas básicos para utilización analógica de los transistores son emisor común, colector común y base común.

Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los terminales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.

Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.



sábado, 10 de octubre de 2009

EL TRANSISTOR


TIPOS DE ENCAPSULADOS DE TRANSISTORES.

El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los artefactos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, celulares, etc.


lunes, 1 de junio de 2009

GENERADOR ELÉCTRICO




Nikola Tesla, un inventor serbio-americano, descubrió el principio del campo magnético rotatorio en 1882, el cual es la base de la maquinaria de corriente alterna. También descubrió el sistema de motores y generadores de corriente alterna polifásica que da energía a la sociedad moderna. El generador eléctrico rotativo está destinado a producir fuerzas electromotrices que sean funciones sinusoidales del tiempo. Los alternadores monofásicos producen una sola fuerza electromotriz, los trifásicos producen tres y, en general, los de n fases producen n fuerzas electromotrices. El alternador es una máquina destinada a transformar la energía mecánica en eléctrica, generando, mediante fenómenos de inducción electromagnética, una corriente alterna. Los alternadores están fundados en el principio de que, en un conductor sometido a un campo magnético variable, se crea una tensión eléctrica inducida cuya polaridad depende del sentido del campo y su valor del flujo que lo atraviesa.Un alternador consta de dos partes fundamentales: un inductor que crea un campo magnético, y un inducido que es atravesado por las líneas de fuerza de dicho campo magnético. El tamaño de los alternadores es muy variable, desde los de tamaño enorme que hay en las centrales termoeléctricas, los medianos que están situados en las aerogeneradores o los pequeños alternadores que llevan instalados los automóviles y demás medios de transporte.


domingo, 10 de mayo de 2009

DISPOSITIVOS ANALÓGICOS.

Amplificador operacional: amplificación, regulación, conversión de señal, conmutación.

Condensador: almacenamiento de energía, filtrado, adaptación impedancias.

Diodo: rectificación de señales, regulación, multiplicador de tensión.

Diodo Zener: regulación de tensiones.

Inductor: adaptación de impedancias.

Potenciómetro: variación de la corriente eléctrica o la tensión.

Relé: apertura o cierre de circuitos mediante señales de control.

Resistor o Resistencia: división de intensidad o tensión, limitación de intensidad.

Transistor: amplificación, conmutación.


sábado, 9 de mayo de 2009

CIRCUITOS ELECTRÓNICOS: CONCEPTOS.

Se denomina circuito electrónico a una serie de elementos o componentes eléctricos (tales como resistencias, inductancias, condensadores y fuentes) o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas.

Los circuitos electrónicos o eléctricos se pueden clasificar de varias maneras:

Por el tipo de información: Analógicos, Digitales y Mixtos.

Por el tipo de régimen: Periódico, Transitorio y Permanente.

Por el tipo de señal: Corriente continua, Corriente alterna y Mixtos.

Por su configuración: Serie, Paralelo y Mixtos.


SerieParaleloMixtos

viernes, 8 de mayo de 2009

COMPONENTES ELECTRÓNICOS.

Para la síntesis de circuitos electrónicos se utilizan componentes electrónicos e instrumentos electrónicos. A continuación se presenta una lista de los componentes e instrumentos más importantes en la electrónica, seguidos de su uso más común:

Altavoz: reproducción de sonido.

Cable: conducción de la electricidad.

Conmutador: reencaminar una entrada a una salida elegida entre dos o más.

Interruptor: apertura o cierre de circuitos, manualmente.

Pila: generador de energía eléctrica.

Transductor: transformación de una magnitud física en una eléctrica.

Visualizador: muestra de datos o imágenes.

jueves, 7 de mayo de 2009

SEÑALES ELECTRÓNICAS

Es la representación de un fenómeno físico o estado material a través de una relación establecida; las entradas y salidas de un sistema electrónico serán señales variables.

En electrónica se trabaja con variables que toman la forma de Tensión o corriente estas se pueden denominar comúnmente señales.Las señales primordialmente pueden ser de dos tipos:

Variable analógica–Son aquellas que pueden tomar un número infinito de valores comprendidos entre dos límites. La mayoría de los fenómenos de la vida real dan señales de este tipo. (presión, temperatura, etc.)

Variable digital– También llamadas variables discretas, entendiéndose por estas, las variables que pueden tomar un número finito de valores. Por ser de fácil realización los componentes físicos con dos estados diferenciados, es este el número de valores utilizado para dichas variables, que por lo tanto son binarias. Siendo estas variables más fáciles de tratar (en lógica serian los valores V y F) son los que generalmente se utilizan para relacionar varias variables entre si y con sus estados anteriores.

miércoles, 6 de mayo de 2009

¿ QUE SON LAS RESISTENCIAS ?

Este vídeo de DFA, habla de las resistencias en general, de sus características, tipos y su fundamento eléctrico y electrónico. Se basa en los apuntes de ELECTRÓNICA BÁSICA APLICADA AL AUTOMÓVIL y consta de los siguientes microvídeos:

¿Qué son las resistencias?
Valores y tolerancias
Tipos de resistencias
Conexión de las resistencias
Aplicación en el automóvil.


martes, 5 de mayo de 2009

¿ QUE SON LOS POTENCIÓMETROS ?

Potenciómetros o resistencias variables son resistencias que varían su valor determinado por variación de un cursor que lleva en su característica constructiva. El presente video de DFA, trata de las resistencias variables y se componen de cuatro microvideos y son:

¿Qué son las resistencias variables?
Modelos de potenciómetros
Conexionado de los potenciómetros
Aplicación en el automóvil

lunes, 4 de mayo de 2009

LOS SEMICONDUCTORES.

Los semiconductores son cuerpos que permiten el paso de la corriente con mucha dificultad y en determinadas condiciones. En este video de DFA, se explica que son los semiconductores, tipos de éstos (P-N), la uniones tipo P-N y su polarización.




Por otra parte, en este video de GM, se hace una introducción a los semiconductores. Este vídeo es muy didáctico y nos presenta el dopado para la realización de los semiconductores de tipo P y de tipo N.

sábado, 2 de mayo de 2009

MÁQUINAS MOORE. MÁQUINAS MEALY ( II ).

Podemos clasificar las máquinas usando dos modelos diferentes:

(1) Como máquinas Moore.

(2) Como máquinas Mealy.

A continuación tenemos un ejemplo de una máquina Moore, llamada así en honor del Profesor Edward F. Moore (1925-2003) quien propuso este modelo matemático para el estudio de máquinas secuenciales:




La máquina Moore se distingue por ser una máquina en la cual dentro de cada círculo además de especificarse el estado de la máquina se especifican la salida o las salidas que se producen en dicho estado. Las salidas no son necesariamente iguales al estado de la máquina. Pueden serlo, como en el caso del contador binario de conteo ascendente de 4 bits mencionado previamente. Pero si cada una de las terminales Q del contador binario mencionado es conectada a una red de circuitos lógicos que convierte el conjunto de salidas en un conjunto de salidas distintas, entonces es obvio que las salidas producidas serán diferentes a los estados de la máquina. La notación utilizada dentro de cada círculo tiene una forma como 10/11, en donde la primera palabra binaria (10) nos indica el estado de la máquina y la segunda palabra binaria (11) nos indica la salida de la máquina que denominaremos z.En el ejemplo mencionado para una máquina Mealy, tenemos una máquina que podemos suponer fue construída con dos flip-flops. De acuerdo al diagrama, esta máquina puede estar en uno de los siguientes tres estados:

q1q0=00 dando una salida de z1z0=01q1q0=01 dando una salida de z1z0=11q1q0=10 dando una salida de z1z0=11Como en el caso de una máquina de estado finito común y corriente que vimos al principio, las flechas exteriores a los estados (círculos) que salen o llegan a un estado son la entrada o las entradas puestas en la máquina en un momento dado. En este caso, tenemos una máquina Moore que también posee una sola entrada designada como x. El comportamiento de esta máquina dependiendo del valor de la entrada x y del estado q=q1q0 en el que se encuentre la máquina es similar a lo que vimos anteriormente, excepto que si la máquina se encuentra en el estado q1q0=00 tendrá una salida z=z1z0=01.

A continuación tenemos un ejemplo de una máquina Mealy:




La máquina Mealy se distingue por ser una máquina en la cual si la máquina está en cierto estado, entonces al aplicarle cierta entrada transicionará a otro estado produciendo cierta salida como consecuencia de la transición. La notación utilizada en los vértices tiene una forma como 1/0, en donde la primera palabra binaria (1) nos indica la entrada dada a la máquina y la segunda palabra binaria (0) nos indica la salida producida al llevarse a cabo la transición de un estado al siguiente.En el ejemplo mencionado para una máquina Mealy, tenemos una máquina que nuevamente podemos suponer que fue construída con dos flip-flops.

De acuerdo al diagrama, esta máquina puede estar en uno de los siguientes tres estados:

q1q0=00q1q0=01q1q0=11 En este caso, tenemos una máquina Mealy que también posee una sola entrada designada como x. La forma de leer este diagrama de estado es la siguiente: Si la máquina se encuentra en el estado q1q0=00, entonces de acuerdo con la notación en el vértice, 1/1, si se le aplica a la máquina una entrada de 1 entonces en el siguiente "pulso de reloj" transicionará al estado q1q0=01 produciendo una salida de 1. Y por el contrario, si está en ese estado de q1q0=00 y se le aplica a la máquina una entrada de 0, entonces en el siguiente "pulso de reloj" la máquina transicionará al estado q1q0=11 produciendo una salida de 1.Se puede demostrar, con rigor matemático, que toda máquina Moore es equivalente a una máquina Mealy, y viceversa. Con esto queremos decir que dada una máquina Moore podemos producir una máquina Mealy, o dada una máquina Mealy podemos producir una máquina Moore tal que ambas tendrán la misma secuencia de salidas q si ambas son alimentadas la misma secuencia en sus entradas x. La demostración para convertir una máquina Mealy en una máquina Moore requiere aumentar el número de estados.De interés para nosotros es el hecho de que existen programas de computadora que nos permiten convertir cualquier máquina de estado finito en un circuito lógico formado por funciones lógicas básicas y flip-flops.

viernes, 1 de mayo de 2009

MÁQUINAS MOORE. MÁQUINAS MEALY ( I ).

Los circuitos lógicos secuenciales tratados en el texto principal de este blog son estudiados en cursos universitarios superiores desde un punto de vista un poco más formal, utilizando un lenguaje un poco más elegante. En realidad, se está hablando de lo mismo. No hay introducción de nuevas técnicas de diseño que podamos considerar imprescindibles para lo que podemos lograr con lo que ya hemos cubierto. De cualquier modo, este artículo tiene como objetivo cubrir esta perspectiva un poco más formal con la finalidad de hacer este libro lo suficientemente flexible como para que pueda ser utilizado por estudiantes universitarios o por técnicos interesados en proseguir con estudios más formales en la materia de lógica digital.

Recordemos el contador binario de conteo ascendente construído con flip-flops J-K. Supóngase que hemos diseñado un contador binario de conteo ascendente de 4 bits usando cuatro flip-flops J-K, al cual denotaremos aquí como una máquina. En cualquier momento, entre un pulso de la señal de reloj y el pulso que le sigue para llevar de el contador de un estado al siguiente, podemos hablar del estado de la máquina. Si en un momento dado entre un pulso de reloj y el que le sigue nuestro contador binario de 4 bits tiene al primer flip-flop J-K en el estado Q1=1, si el segundo flip-flop está en el estado Q2=0, si el tercer flip-flop J-K está en el estado Q3=0 y si el cuarto flip-flop está en el estado Q4=1, entonces el estado de la máquina es Q1Q2Q3Q4=1001.

Puesto que, por diseño, esta es una máquina sin entradas, el siguiente estado de la máquina será Q1Q2Q3Q4=1010. No puede ser de otra manera, puesto que así se ha diseñado la máquina.

Veamos a continuación una representación para una máquina de estado finito (finite state machine) conocido como diagrama de estados:







Aquí tenemos una máquina que podemos suponer fue construída con dos flip-flops. Cada círculo representa uno de los estados de la máquina, la cual sólo puede estar en un estado en un momento dado. Podemos ver esta representación como un juego en el cual los círculos están dibujados en el suelo y en cualquier momento estamos situados en uno de los círculos. De acuerdo al diagrama, esta máquina puede estar en uno de los siguientes tres estados:

q1q0=00

q1q0=01

q1q0=10
Las flechas exteriores (vértices) a los estados (círculos) que salen o llegan a un estado son la entrada o las entradas puestas en la máquina en un momento dado. En este caso, tenemos una máquina que posee una sola entrada designada como x. Veamos ahora lo que sucede en esta máquina dependiendo del valor de la entrada x y del estado q=q1q0 en el que se encuentre.

Si la máquina se encuentra en el estado q1q0=00 y la entrada es x=1, entonces en el siguiente "pulso de reloj" la máquina pasará al estado q1q0=01. Pero si la entrada es x=0 cuando la máquina se encuentra en el estado , entonces en el siguiente "pulso de reloj" pasará al estado q1q0=10.

Por otro lado, si la máquina se encuentra en el estado q1q0=01 y la entrada es x=1, entonces en el siguiente "pulso de reloj" la máquina pasará al estado q1q0=10. Pero si la entrada es x=0 cuando la máquina se encuentra en el estado q1q0=01, entonces en el siguiente "pulso de reloj" la máquina se mantendrá en el mismo estado, como si estuviese "atorada" sin poder salir de allí.

Así, este diagrama de estados describe por completo el comportamiento de la máquina para todos los estados posibles de la máquina.

miércoles, 29 de abril de 2009

GE LOGRA METER 100 DVDs EN UN SOLO DISCO Y A BAJO COSTO



Científicos del GE Global Research Center GE en Nueva York acaban de anunciar un gran avance en la industria del almacenamiento de datos:
Lograron demostrar con éxito, en laboratorio, una tecnología capaz de almacenar 500 gigabytes en un solo disco de bajo costo y del tamaño de un DVD tradicional. Según ellos, esto equivale a 4 mil veces más información de lo que un cerebro humano puede retener durante la vida promedio de una persona.
La nueva técnica codifica los datos en patrones de luz específicos para posteriormente almacenarlos sobre un material sensible a la luz formando hologramas microscópicos. Éstos actúan como pequeños espejos refractando los patrones luminosos al momento de que el láser actúa sobre ellos.
El almacenamiento holográfico permite almacenar paquete de datos de una manera mucho más densa sobre una superficie en particular que la tecnología óptica convencional que se encuentra en los DVDs comunes.
La ventaja de esta técnica es que el sistema no utiliza la superficie de un disco, sino que todo el volumen del mismo. Algo asó como almacenamiento en 3 dimensiones donde se aprovecha cada rincón del disco.
El proceso de lectura es similar al de los sistemas Blu-ray actuales, pero ofreciendo 20 veces la capacidad de almacenamiento que una sola capa de disco Blu-ray.
En la actualidad existen varias tecnologías que usan la técnica holográfica de almacenamiento, pero ninguna ha llegado a una etapa done sea factible producirlo en masas para que sea comercialmente factible. La nueva tecnología de GE promete romper con la barrera del precio y lograr producir una solución a nivel comercial.

martes, 28 de abril de 2009

EL PLC: DIAGRAMAS DE ESCALERA ( VI )

A continuación tenemos un ejemplo de cómo la acción de tres interruptores de entrada es convertida en una función lógica elaborada gracias a la programación llevada a cabo sobre el PLC con la ayuda de la computadora:


En este caso, tenemos tres interruptores X1, X2 y X3 de activación manual, todos ellos normalmente abiertos, conectados a sus respectivas entradas al PLC, en el cual gracias a la programación llevada a cabo con la ayuda de la computadora son combinados para formar la siguiente función Boleana:
Y1 = X1∙X2 + X2∙X3 + X1∙X3Con la misma facilidad con la cual formamos esta función Boleana a partir de los tres interruptores conectados a las entradas del PLC podríamos haber formado funciones Boleanas más complejas aún, lo cual nos dá una muestra de las enormes ventajas que tiene el darle capacidades de programación a los controladores lógicos.Ahora se mostrará la implementación en un PLC de algo que ya vimos aquí previamente; la dotación de una "memoria" a una configuración usando para ello la retroalimentación:





En este esquema, podemos ver en el diagrama de escalera que si se oprime manualmente el botón interruptor normalmente abierto X1, identificado como "Activación del Motor", la salida del relevador de control Y1 será energizada con lo cual dicho relevador cerrará uno de sus contactos permitiendo con ello que un motor M1 sea echado a andar. Pero al mismo tiempo, otro de los contactos del relevador de control que está en combinación lógica OR con X1 será también cerrado. Este es el contacto normalmente abierto Y1, y aunque el botón interruptor X1 deje de ser oprimido el motor seguirá trabajando por el efecto "memoria" que está proporcionando la retroalimentación de Y1 hacia sí mismo a través de uno de sus contactos. Si queremos detener el movimiento del motor, tenemos que abrir el contacto normalmente cerrado X2 oprimiendo dicho botón. Obsérvese que en el diagrama de escalera antes de comenzar la acción el interruptor X2 no es mostrado de color rojo pese a que el foquito LED del PLC está encendido indicando suministro de energía, en virtud de que a X2 se le considera "encendido" cuando el contacto es abierto por acción del usuario. El empleo de relevadores electromecánicos de uso pesado para este tipo de función es más común de lo que muchos pudieran imaginarse: cada vez que una persona entra a un ascensor y oprime un botón que marque un piso diferente al piso en el que se encuentra, la puerta del ascensor se cierra y la persona es llevada hacia el piso seleccionado sin necesidad de que la persona tenga que seguir manteniendo oprimido el botón correspondiente a dicho piso. Y una vez que ha llegado a dicho piso, otro contacto interruptor normalmente cerrado se abre "limpiando" con ello la memoria de la requisición del usuario. Pero este tipo de circuito puede trabajar en forma completamente automática sin intervención humana, como lo muestra el siguiente ejemplo animado de un tanque de almacenamiento de líquidos que consta de dos sensores que detectan uno de ellos un nivel bajo de líquido y el otro un nivel alto de líquido (ampliar imagen para poder ver la acción con efectos animados):






En este ejemplo, al principio el tanque está inicialmente vacío y todos los interruptores están en la condición de "verdadero" (True). En el monitor de una computadora que supervisa no sólo lo que ocurre en el diagrama de escalera (puesto a la derecha) sino inclusive en una representación pictográfica de lo que se está controlando (puesto a la izquierda), al empezar con el tanque vacío todos los interruptores aparecen de color verde al igual que los sensores de un nivel bajo del líquido (low level) y un nivel alto del líquido (high level). Estos dos sensores son las entradas en el diagrama de escalera. Es importante remarcar aquí antes de que el ejemplo se pueda prestar a confusiones que en esta representación visual se utiliza el mismo símbolo para un interruptor normalmente cerrado que el que se usa para un interruptor normalmente abierto, y la labor de distinción se debe hacer tomando en cuenta lo que ocurre en el diagrama pictográfico a la izquierda. Al comienzo, el motor de llenado de líquido (fill motor) que aparece como una salida puesta en el segundo peldaño del diagrama de escalera es energizado gracias al contacto normalmente cerrado en el segundo peldaño que es un contacto perteneciente al relevador de control cuya salida a su vez está puesta en la esquina superior derecha del primer peldaño del diagrama de escalera; por lo tanto al comienzo el motor se encuentra trabajando llenando el tanque de líquido. Podemos concluír que los dos interruptores puestos en el primer peldaño del diagrama de escalera son interruptores normalmente cerrados ya que de otra forma por estar ambos en configuración AND el motor de llenado no podría estar trabajando. Al irse llenando el tanque, el sensor de nivel bajo de líquido eventualmente es activado pasando con ello de la condición de "verdadero" (True) a la condición "falsa" (False), destacada con letras de color rojo en el primer interruptor (normalmente cerrado) puesto en el extremo izquierdo del primer peldaño que corresponde precisamente al sensor de nivel bajo de líquido. En el diagrama pictográfico, el mismo sensor de nivel bajo de líquido cambia de color verde a color rojo resaltando su activación. Pero el llenado de líquido no se detiene al abrirse este interruptor, ya que por el efecto "memoria" la corriente eléctrica encuentra un camino alterno (indicado por una línea de color azul). Eventualmente, el tanque se sigue llenando hasta que el sensor de nivel alto de líquido es activado pasando también de la condición de "verdadero" (True) a la condición "falsa" (False). Al ocurrir esto, el segundo interruptor normalmente cerrado del primer peldaño pasa de "verdadero" (True) a la condición "falsa" (False), lo cual corta definitivamente el suministro de energía a la salida correspondiente al relevador de control del motor de llenado que también entra en condición False al ser apagada . De este modo, queda claro que los dos interruptores que aparecen en el primer peldaño del diagrama de escalera son los que corresponden a las entradas proporcionadas por ambos sensores de nivel alto y nivel bajo de líquido. Al apagarse el relevador de control, su salida con la cual se está retroalimentando pasa también a la condición False al igual que su salida con la cual estaba permitiendo la energización del motor de llenado en el segundo peldaño. Es así como todos los interruptores entran en la condición de False en el diagrama de escalera. Al apagarse el motor, el nivel del líquido en el tanque empieza a descender conforme a su uso normal, hasta que eventualmente el nivel del líquido está por debajo del sensor del nivel alto que con ello pasa de la condición False a la condición True. Pero esto no es suficiente para echar a andar el motor de llenado de líquido, ya que es necesario que el sensor de nivel bajo de líquido también entre en la condición True para que el motor empiece a funcionar al energizarse de nuevo el relevador de control, lo cual ocurre eventualmente dando inicio a un nuevo ciclo de llenado automático del tanque.El circuito que acabamos de estudiar es un circuito de ciclo perpetuo. Una vez que ha sido echado a andar, continuará trabajando por sí solo sin intervención humana de ningún tipo mientras reciba suministro de corriente y mientras no falle alguno de los componentes.Independientemente de que las computadoras que llevan a cabo las funciones de inteligencia sobre un PLC han ido aumentando enormemente en grado de sofisticación, los mismos PLC han ido evolucionando en capacidad y en funciones, a grado tal que muchos de los relevadores electromecánicos que dieron origen al PLC son prácticamente obsoletos, desplazados por la presencia de semiconductores de alta potencia capaces de manejar voltajes y corrientes elevados. A continuación tenemos una muestra de un "relevador" de estado sólido en el cual ya no hay bobinas de alambre ni resortes ni palancas mecánicas móviles:
















En este relevador de estado sólido, mejor conocido como opto-acoplador (opto-coupler) hay un aislamiento eléctrico total entre su entrada y su salida en virtud de que el acoplamiento interno entre la entrada y la salida se lleva a cabo por medio de la luz, con un diodo LED emitiendo un haz luminoso al cerrarse el interruptor a la entrada, haz luminoso que pone en funcionamiento un opto-triac permitiendo el paso de la corriente alterna a través de la carga. Obsérvese que con esta configuración la entrada es alimentada con una fuente de corriente directa, mientras que la carga recibe por su parte la energía de una fuente de corriente alterna, y todo ello sin necesidad de recurrir a electrónica interna costosa, lo cual ha sido posible gracias al advenimiento de la optoelectrónica que proporciona este tipo de aislamientos entre circuitos distintos utilizando a la luz como intermediaria.Un PLC de "nueva generación" es el Allen-Bradley PLC5, expandible a base de módulos, el cual se muestra a continuación:






















La "rejilla" (rack) que alberga los módulos incluye como mínimo una fuente de poder que sea capaz de alimentar las funciones básicas de procesamientos de todos los módulos que sean montados en ella, y debe incluír también un módulo especial fijo (permanente, no-removible) que incorpore un microprocesador o un microcontrolador que llevará a cabo las funciones de control y programación interna dentro del PLC tanto de las entradas como de las salidas. Los módulos opcionales generalmente son módulos para poder manejar entradas o para poder manejar salidas, con distintas capacidades según lo requieran las necesidades de los clientes. Si alguna aplicación requiere súbitamente aumentar el número de relevadores de control de salidas de cinco a treinta, por ejemplo, no hay necesidad de tener que adquirir otro PLC completamente nuevo perdiéndose con ello la inversión original, sólo es necesario adquirir otro módulo para poder aumentar así la capacidad de manejo de salidas del PLC. Esta es esencialmente la idea detrás de la principal ventaja de la modularidad, en contraste con los PLCs que son vendidos como cajas "cerradas" cuyas capacidades no pueden ser ampliadas posteriormente, y es una de las razones por las cuales la computadora de escritorio no ha podido reemplazar por completo a los PLCs como en un principio se creyó que ocurriría.Un PLC de este tipo ofrece una gran flexibilidad a un costo igualmente grande, aunque para aplicaciones de automatización y control industrial y comercial existen controladores lógicos más económicos que inclusive además de ser portátiles se pueden programar directamente en el área de trabajo empleándose la carátula en la cual aparece el diagrama de escalera como medio visual para poder leer, interpretar, y reprogramar si es necesario, cualquiera de los parámetros de los que consta alguna aplicación, como lo es el caso del controlador ZEN fabricado por la empresa japonesa Omron:

Hemos hablado aquí de los controladores lógicos programables, desarrollados a fines de los años sesenta, los cuales están siendo reemplazados por los más modernos controladores programables de automatización (Programmable Automation Controller o PAC), los cuales ofrecen la posibilidad de utilizar algoritmos avanzados de control, manipulación extensiva de bases de datos, simulación de procesos complejos, procesamiento veloz bajo control de microprocesador, y capacidad en el manejo de rangos de memorias que están fuera del alcance de los PLCs.